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Abstract 

In this chapter, we develop a Bayesian Pairwise Classifier framework that is suitable for pattern 
recognition problems involving a moderately large number of classes, and apply it to two character 
recognition datasets. A C class pattern recognition problem (e.g. C = 26 for recognition of English 
Alphabet) is divided into a set of (^) two-class problems. For each pair of classes, a Bayesian classifier 
based on a mixture of Gaussians (MOG) is used to model the probability density functions conditioned 
on a single feature. A forward feature selection algorithm is then used to grow the feature space, and 
an efficient technique is developed to obtain a MOG in the larger feature space from the MOG's in 
the smaller spaces. Apart from improvements in classification accuracy, the proposed architecture also 
provides valuable domain knowledge such as identifying what features are most important in separating 
a pair of characters, relative distance between any two characters, etc. 

1    Introduction 

There are two phases in a typical pattern recognition problem: The learning/training phase and the gen- 
eralization phase. In the learning phase, a predictor or classifier is designed from already labeled training 
examples. In the generalization phase, a novel example is assigned a class label by the trained classifier. 
The ability of the classifier to generalize to novel examples not seen during training is central to pattern 
recognition. It is typically measured in terms of the empirical generalization accuracy defined as the fraction 
of novel examples (test examples) that were assigned the right class label by the trained classifier. 

Depending on the domain of application, the raw input could be a set of observed properties (e.g. 
symptoms of a disease), a one dimensional signal (e.g. voice recognition, text recognition etc.), or even an 
image (e.g. face recognition, character recognition etc.). It is neither feasible nor practical to learn a mapping 
from such complex input spaces to class labels. Hence, a preprocessing stage involving data conditioning 
followed by feature extraction is used to transform the raw sensory input into a small set of features that the 
classifier can operate on. This is all the more true for character recognition problems where the input is an 
image of handwritten characters. Thus, the two stage learning process can be expressed in terms of a pair 
of mappings: 

xelAyef Auefi, (l) 

where the first mapping $ : I -► T, called the feature extractor, transforms an input vector x in the input 
space 1 into a feature vector y in some feature space T, and the second mapping # : T -> ft, called the 
classifier, assigns a class label u> e ft = {wi,W2,...,wc} to the feature vector y. For example, in the 
first character recognition problem that is considered in this chapter, the input images of characters are 
transformed into a set of 16 properties such as mean positions of on pixels, their variance, and mean edge 
count from left to right and bottom to top, etc. In the second problem, 30 tangent vectors are computed 
from each character image. Although domain knowledge is used to extract these features and reduce the 
16384 dimensional (a 128 x 128 character image) input space to a 30 dimensional feature space, it is not 
necessary that all the extracted features will be actually useful in classification. Hence a smaller set of these 
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1.2    Probabilistic learning framework 

Once a suitable feature space T is obtained by feature extraction/selection methods, one has to discriminate 
among different classes in the feature space T. The input to the classifier mapping $ : T -> ft is a feature 
vector y = *(x) for any input x € 1. The probabilistic learning framework, popular in the statistical pattern 
recognition community, is used for modeling <$ in this work. There are a number of classifiers with different 
properties that have evolved from this framework. 

In the probabilistic learning framework [1,6], input patterns and class labels are assumed to be stochas- 
tically independent and identically distributed random variables X and Q respectively. Since feature vectors 
are obtained from the input patterns, they are also assumed to be random variables Y. In the following 
description of the probabilistic learning framework, only variables Y and fi are used since once $ is fixed, 
for every X there is a corresponding Y. The salient features of the probabilistic learning framework are as 
follows: 

• Y and fi are sampled from an unknown joint probability density function py,fi(y,w). 

• Input patterns belong to one of the C classes with the prior probability of a sample being in class uc 

given by P(ti = uic) = P(wc). The priors are constrained by £)c=i P{uc) = 1- 

• The overall probability density function p(y) is a mixture of C class conditional probability density 
functions computed in the feature space i.e. {p(Y — y\Q = uc) = p(y|wc)}f=1: 

p(y)-Ep(w^(yiWc) <4) 
c=l 

• The posteriori probability P(Q = LJC\Y = y) = P(uc\y) of pattern y belonging to class uc is given by 
the Bayes rule: 

(   ' } = —PV) ' 
where the denominator (see 4) is a normalizing factor such that X]c=i ^(^cly) = 1- 

• The classifier $(y) tries to estimate these posterior probabilities {P(u}c\y)}^=1. Using these estimates, 
it assigns class label w(y) based on the maximum aposteriori probability (MAP) rule, 

$(y) = w(y) = arg max P(uc\y). (6) 
c=l...G 

• The misclassification error for the MAP rule is given by 

£MAP($)= /(I-  max £(a;c|y))dy. (7) 
Jy c=l...C 

• A training set X = {XC}^=1 c I, where Xc is the set of training inputs in class wc, is available for 
supervised learning of 4?. After feature extraction, the corresponding training data is denoted by y = 
{iVc}£=i c -^i wnere f°r each sample x € X, there is a corresponding y € y, such that y = \P(x). 

1.3    Classifier Taxanomy 

There are two broad categories into which most of the classifier architectures can be divided: DENSITY BASED 

and REGRESSION BASED [7]. 

1. DENSITY BASED classifiers estimate the class conditional probabiliy density functions {p(y\ujc)}^=l 

and use these to compute the aposteriori probabilities using the Bayes rule (5). Once the estimated 
aposterior probabilities are available, the MAP rule (6) can be used to assign y a class label w(y). In 



2.1    Pairwise Classifier Architecture 

Figure 1 shows the BPC framework. Each classifier cj>ij has an associated feature extractor denoted by 
xj)ij : I -¥ Tij that transforms an input x G 1 into a feature vector Vy(x) £ Tij. The output of fcj is an 
estimate of the posterior probability Pij(ui\ipij(x)) (Pij(u)j\ipij(x.)) = 1 - Pij(u!i\ipij{x))). 

Each 0jj is implemented as a Bayesian classifier that uses two mixture of Gaussians (MOG), one for class 
Wj and one for class Wj, to model the probability density functions p(ipij(x)\cjk), k = i,j: 

fliMx)!«*) = £ TT^ö (^(x);^^^) , (10) 

where n^ is the number of Gaussians in the mixture for class ojk, and /xj^ (£ -^y) and S^ are the 
mean vector and covariance matrix of the ath Gaussian in the mixture of class Uk for the classifier $y. The 
Gaussian function Q is given by: 

g(y;/x,s) = 7(^mexp ■^(y-^S-^y-/.) (11) 

where y = ^y(x) and d = \Tj\ = the dimensionality of the feature space Tij. Bayes rule is used to compute 
the classifier output: 

MiMx» = 4*MiM*)) = ... , „ fßf^f'ffTi  ,»<  vk = *>*> (12) 
P(i>ij(x)\Ui)Pij{Ui) + PWj{X)\Uj)Pij{Uj) 

where Pij(uk) are the estimated class priors based on the training data: 

^•("*>=m + L- (13) 

The problem of finding the right set of features {Tij) and the set of parameters {irk*£,p£i >^*,a )> 

Va = 1.. .rifc    , fc = i, j, and that of finding the right number of mixtures rvk     are discussed next. 

2.2    Feature Selection 

Feature selection is done separately and independently for each pairwise classifier. Let F = {1,2,...,D} 
denote the index set of all features and y = ipij (x) € Tij C F denote the feature vector corresponding to x. 
In order to select the most discriminating features for the class pair (uji,ujj), a relevance R(Tij) is assigned 
to the feature set Tij based on the log odds of estimated class posteriors over the training set Xi U Xj: 

*ew - m £log ffrrnr+m £los Ält'fii (14) 

Note that the relevance depends on estimates of pairwise posteriors of Py (wfc|^y(x)), which in turn depends 
both on the feature space Tij and the parameters used for modeling the pdf in Equation (10). The algorithm 
for feature selection for the class pair (WJ,WJ) is summarized below: 

1. Initialize Tij = argmax/£F.R(/). 

2. Augment the feature set sequentially as follows: 

(a) Find the next best feature / to add to T^: 

/«-arg   max   R(Tij + /), (15) 

where (Tij + /) denotes the feature set formed by augmenting feature / in the feature set Tij. 
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Figure 1: Pairwise classifier architecture: (^) 
pairwise classifiers with respective feature selec- 
tors 

2.3    Combining the pairwise classifiers 

KAUAAAAAAA 
BBSBZJBBBM 
CcCfr&cccO 
SMFFFFF 
XKAWKM 
SaSSSSflSSä 

Figure 2: Some examples of letters in LETTER-I 
dataset [21] 

The outputs of the (2) classifiers can be combined to obtain the final output in two ways: (i) by simple 
voting [22], or (ii) by using the MAP rule on an estimate of the overall aposterior probabilities obtained 
from the outputs of the pairwise classifiers [23]. In the voting combination scheme, a count c(wfc|x) of the 
number of (£) classifiers that labeled x into class uik, 

c(wft|x) = £ J(&*(iMx)) < 0.5) + 5]/(<M<Mx)) > 0.5), (25) 
i<k i>k 

is used. Here I(bool) is the indicator function, which is 1 when the bool argument is true, and 0 otherwise. 
The input x is assigned the class label for which the count is maximum, i.e. w(x) = argmaxfc=i...cc(a;fc|x). 

In another approach to combining pairwise classifiers, proposed recently [23], the overall posterior prob- 
abilities pi = P(ui\x) Vi = 1... C are estimated for some x from the (£) posterior probabilities given by 12 
as follows. Denote rriij = \Xi\ + \Xj\, r^ = <pij(ipij(x)) and Vij — . j|;. . The goal is to find an estimate pi of 
true posteriors P(WJ|X) such that Vij is close to r^, Vi ^ j. Since there are C-1 independent parameters but 
(2) equations, it is not possible in general to estimate pi so that i/y- = ry Vi ^ j. Hence only an approximate 
solution is sought. The closeness criteria that forms the objective function for finding p = (j>i,P2, ■ ■ -Pc) is 
the weighted KL-distance between r^ and Uij: 

i<3 

J(P) = 5Z mii  rii los — + (! _ ra) loS i ~ (26) 

This results in the following algorithm. 

1. Start from an initial guess for pi = U#, and evaluate corresponding Vij using the definition above. 

2. Repeat the following updates for i = 1,2,..., C, 1,2,... till convergence: 

mur i]>ij 

jj^iimijUij 
(27) 

L. 



Classifier LETTER-I LETTER-II 
Train Test Train Test 

Jfe-NN 91.2 (0.31) 89.9 (0.42) 91.9 (0.39) 89.5 (0.44) 
MLP 80.2 (0.67) 79.3 (0.73) 79.3 (0.71) 76.2 (0.81) 
MLC 84.4 (0.34) 82.7 (0.49) 81.4 (0.44) 79.5 (0.51) 
BPC(1,V) 87.2 (0.45) 85.4 (0.57) 83.7 (0.52) 82.1 (0.63) 
BPC(1,M) 87.6 (0.39) 85.3 (0.49) 84.9 (0.51) 83.3 (0.59) 
BPC(n,V) 88.9 (0.26) 86.2 (0.33) 85.6 (0.36) 83.1 (0.40) 
BPC(n,M) 89.5 (0.24) 87.6 (0.35) 87.9 (0.39) 86.3 (0.46) 

Table 1: Average Training and test Accuracy (standard deviations) for multi layered perceptrons(MLP), 
Maximum likelihood classifier (MLC), Bayesian pairwise classifier with single Gaussian with voting 
combination method (BPC(1,V)), and MAP estimate combination (BPC(1,M)), and Bayesian pairwise 
classifier with mixture of Gaussian for voting (BPC(n,V)) and MAP estimate (BPC(n,M)) combination. 

Classifier LETTER-I LETTER-II 
FEATURES    GAUSSIANS FEATURES    GAUSSIANS 

BPC(l) 11.3                   1.0 13.5                   1.0 
BPC(n) 8.2                    1.1 9.8                    1.5 

Table 2: Number of features used (FEATURES) and number of Gaussians in the mixture of Gaussians pdf's 
(GAUSSIANS), averaged over all the (£) Pairwise classifiers for both BPC(l) and BPC(n) case. 

number of features required. Distribution for total usage of different features over all the pairwise classifiers 
is shown in Figure 3. For both BPC(l) and BPC(n), the distribution of usage of different features looks 
considerably similar for both datasets. In BPC(n) classifiers, the average number of Gaussians per pairwise 
classifier is more than 1 but the number of features required is significantly less than those required by 
BPC(l) classifier. Further, the fact that some pairwise classifiers required more than 1 Gaussians per class 
to model their pdf's, shows that the data sets were not exactly unimodal and this explains the difference in 
performance of BPC(l) and BPC(n) classifiers. 

4    Domain Knowledge Extraction 

The pairwise architecture with Bayesian classifiers based on mixture of Gaussians, makes it possible to 
extract several kinds of domain knowledge from the trained predictors, for example, features that are useful 
for distinguishing between particular pair of classes, a measure of distance between classes etc. Domain 
knowledge extracted from the character recognition datasets is described in this section. 

4.1    Overall Importance of Features 

Figure 3 shows the histogram of the number of times a feature was actually used in the pairwise classifiers for 
both BPC(l) and BPC(n) variants. For the LETTER-I dataset, the least used feature was vertical position 
of the box (feature 2), and the most used feature was edge count from bottom to top (feature 15). This 
kind of domain knowledge could reduce the cost of measuring different properties (features) of the objects 
once it is known what properties (features) are more useful than others for the overall task. Such domain 
knowledge is very useful in applications like remote sensing classification problems, where certain types of 
sensors are more useful than others for a given application [19]. 



- A B C D E F O H I J K L M N O P Q R S T U V W X Y Z 
A - 37 39 45 45 42 44 36 45 38 43 48 37 48 33 45 39 37 40 48 38 40 35 28 39 36 
B 9 - 37 21 11 25 30 21 38 33 29 34 33 29 25 19 25 13 18 36 44 37 45 33 39 19 
C 7 11 - 44 ie 38 IS 21 29 38 18 33 33 41 18 40 30 49 41 40 27 40 44 42 22 47 
D 13 10 12 - 26 38 23 25 31 33 31 34 33 31 18 18 42 22 32 31 45 39 39 40 34 41 
E 8 2 5 8 - 41 22 19 29 28 34 36 32 46 27 33 41 26 29 34 33 47 45 19 26 20 
F 8 10 12 12 11 - 28 40 37 42 33 38 32 41 38 16 37 39 24 22 43 41 38 33 25 31 
G 13 16 10 10 9 8 - 18 40 30 21 34 23 36 15 36 20 31 38 34 26 42 32 32 45 43 
H 10 10 5 7 4 11 4 - 42 29 18 44 34 35 13 39 17 18 38 37 26 38 33 22 35 S3 
I 11 8 5 7 a 12 10 8 - 22 31 46 36 44 44 32 35 39 25 40 42 40 44 31 36 41 
J 10 12 10 11 a 13 8 7 4 - 29 38 39 42 20 38 28 42 26 39 34 41 37 30 36 28 
K 10 9 6 11 14 8 12 5 7 7 - 36 37 33 34 33 35 35 22 37 34 42 38 13 47 29 
L 12 10 7 11 12 7 13 13 10 8 11 - 35 39 43 39 36 32 51 35 38 38 42 31 33 47 
M 14 10 6 7 4 6 9 12 5 12 11 6 - 23 25 34 26 28 29 41 29 38 27 30 40 33 
N 10 5 11 10 8 10 13 12 8 7 8 9 10 - 28 33 37 40 48 41 36 44 29 43 40 42 
O 11 9 8 11 5 8 13 5 8 3 9 11 8 7 - 28 16 30 36 31 27 39 43 33 36 29 
P 11 6 11 3 7 11 13 10 12 12 7 7 7 8 9 - 28 20 30 38 41 48 35 31 36 36 
<-> 10 8 10 12 15 12 8 5 7 8 11 15 7 12 8 9 - 39 27 36 18 41 37 32 42 39 
R 9 12 13 9 5 11 10 9 11 11 11 8 9 12 12 4 13 - 13 35 38 40 38 38 44 47 
S 12 8 13 13 11 12 13 9 7 9 9 14 4 9 10 9 9 6 - 42 41 43 42 25 37 28 
T 10 9 9 7 8 9 8 11 11 9 8 6 7 9 7 11 9 8 13 - 34 35 39 34 33 33 
U 7 9 10 12 6 10 9 10 7 7 9 7 7 8 8 9 5 8 9 7 - 42 42 36 38 42 
V 7 8 7 7 11 12 10 12 6 8 12 6 12 12 9 13 9 8 9 11 10 24 33 28 41 
w 7 11 10 7 8 10 7 7 7 5 11 6 7 8 10 8 10 7 8 7 10 12 - 36 32 40 
X 4 9 12 13 8 13 13 7 11 13 5 8 4 13 9 11 11 13 8 13 10 6 5 - 34 38 
Y 7 9 6 7 3 8 13 9 7 6 11 5 12 10 8 11 11 9 11 11 12 13 10 11 - 36 
z 8 4 10 10 9 9 11 12 13 11 9 12 3 6 5 10 2 11 12 10 6 7 5 11 7 - 

Table 3: The lower triangular matrix entries denote the number of features used for each pair of classes and 
the upper triangular matrix denotes the rounded relevance measure in the corresponding feature space. 

number of modes for a class in a given feature space. The BPC framework addresses both these problems 
efficiently by the growing and pruning algorithm described in section 2.2. It also highlights the fact that the 
number of modes in a distribution is conditioned on the feature space. 

Consider the scatter plots of class pairs (B/M), (B/W), (D/W), and (H/W) in Figures 4 and 5. For 
all these cases a single Gaussian would not have been able to model the desired pdf's. Moreover, different 
number of Gaussians are required, in general, for the two classes within each pairwise classifier. Thus 
the flexibility of the BPC architecture in not only choosing the right features, but also in automatically 
deciding the right number of Gaussians to model the pdf's for different classes, was found to be useful for 
the two datasets. Such flexibility is not available in conventional classifiers. Thus domain knowledge about 
the feature space together with information about the number of modes of each class in the corresponding 
feature space can be extracted from the BPC architecture. 

4.4    Distance between classes 

In conventional methods where a single classifier is used for the whole C class problem, an estimate of 
the distance between two classes could be obtained from the "confusion matrix" of training/validation set. 
Higher is the number of class w* examples getting classified into class u>j and vice versa, the "closer" are the 
two classes. Unfortunately, this kind of estimate is influenced by the type of the classifier used, instead of 
solely being a property of the domain itself. 

The BPC framework provides a classifier independent measure of distance between class pair (wi,Wj) in 
terms of the relevance function R(Tij). If Tij is a feature space in which the discrimination between two 
classes is high, then smaller relevance implies that it is harder to distinguish between the classes, which in turn 
implies that the two classes are "close" to each other in some sense. Table 3 contains the relevance measures 
between all pairs of classes for LETTER-I dataset. Since relevance is symmetric, only the upper triangular 
matrix is used for relevance measures. The lower triangular matrix contains the number of features required 
to distinguish between two classes. Relevance measures that are towards the lower and higher end are bold 
faced. The pair of classes that were found to be "close" to each other in terms of the relevance function 
using the LETTER-I dataset were (B/E), (B/R), (O/Q), (K/X), (P/F), etc. Classes that were found to be 
"distant" from each other were (H/Z), (L/S), (P/V), (A/L), etc. These results are particularly interesting as 
they show how the BPC framework is able to extract expected domain knowledge. The distance information 
is also useful, for example, to hierarchically cluster the characters. 
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